Certain statements contained in this presentation, including all statements that are not historical facts, contain forward-looking statements and forward-looking information within the meaning of applicable securities laws ("forward-looking information"). Such forward-looking information includes, but is not limited to, statements or information with respect to the overall objectives and strategic plans, work programs, exploration budgets and targets and mineral resource estimates of Pure Energy Minerals Limited ("Pure Energy" or the "Company"). Readers should review all of the Company's public disclosure including its most recent Annual Information Form and the risk factors contained therein, the technical reports on its properties, and its audited financial statements and Management's Discussion and Analysis (MD&A), all as filed on www.sedar.com from time to time.

Forward-looking information includes, but is not limited to, statements related to activities, events or developments that the Company expects or anticipates will or may occur in the future, including, without limitation; statements related to the Company's release of the PEA Technical Report ("PEA") for the Clayton Valley Lithium Project ("Project"); the economic analysis of the Project; the mineral resource estimate for the Project; the estimated annual production of LiOH·H₂O and LCE; the availability and development of more sustainable technologies for use at the Project; the expected mine life; the estimated NPV of the Project; the estimated average operating costs; estimated capital costs; estimated EBITDA; the estimated payback period for the Project; the estimated timeline for construction of the Project; the estimated IRR of the Project; the estimated payback period for the Project; the estimated operating costs at the Project; expected growth in the market for lithium hydroxide; anticipated changes in battery formulation technologies; estimated market prices for lithium hydroxide; anticipated production levels at the Project; expected plant design at the Project; and the development of a timeline for completion of a feasibility study for the Project.

Forward-looking information is often identified by the use of words such as "plans", "planning", "planned", "expects" or "looking forward", "does not expect", "continues", "scheduled", "estimates", "forecasts", "intends", "potential", "anticipates", "does not anticipate", or "belief", or describes a "goal", or variation of such words and phrases or states that certain actions, events or results "may", "could", "would", "might" or "will" be taken, occur or be achieved. Forward-looking information is based on a number of factors and assumptions made by management and considered reasonable at the time such information is provided. Forward-looking information involves known and unknown risks, uncertainties and other factors that may cause the actual results, performance, or achievements to be materially different from those expressed or implied by the forward-looking information.

A number of other factors may adversely impact Pure Energy and the Project, including: the Company's inability to complete further mineral resource and mineral reserve estimates; the inability to complete a subsequent feasibility study; the inability to anticipate changes in brine volume or grade due a number of factors; changes to the economic analysis; the failure to obtain necessary permits to explore and develop the Project; environmental issues or delays; inability to successfully complete additional drilling at the Project; and inability to obtain financing for future exploration and development work and construction of a plant at the Project. Although Pure Energy has attempted to identify important factors that could cause actual actions, events, or results to differ materially from those described in the forward-looking information, there may be other factors that cause actions, events, or results not to be as anticipated, estimated, or intended. There can be no assurance that forward-looking information will prove to be accurate. The forward-looking information contained herein is presented for the purpose of assisting investors in understanding the Company's plan, objectives, and goals and may not be appropriate for other purposes. Accordingly, readers should not place undue reliance on forward-looking information. Pure Energy does not undertake to update any forward-looking information, except in accordance with applicable securities laws.

Mineral resources which are not mineral reserves do not have demonstrated economic viability. The category of inferred resource is the least reliable resource category and is subject to the most variability. Until mineral reserves and resources are actually mined and processed, the quantity of mineral reserve and resource grades must be considered as estimates only. Patrick Highsmith MSc., CPG., is a qualified person as defined by NI 43-101, and has supervised the preparation of the scientific and technical information that forms the basis for this presentation. Mr. Highsmith is not independent of the Company as he is a director.
The PEA is based upon a process flow sheet that may change, which would impact all costs and estimates. Operating costs for the Project were based upon assumptions including future energy costs, water costs, labor, regulatory costs and other variables that are likely to change. Capital costs were based upon plant equipment and other items thought to be necessary for production. Lithium hydroxide monohydrate price forecasts were based upon third-party estimates and management assumptions that may change due to market dynamics. Changes in estimated costs to acquire, construct, install, or operate the equipment, or changes in projected pricing, may adversely impact Project economics.

The economic analysis included in the PEA is based upon inferred mineral resources only. Mineral resources that are not mineral reserves do not have demonstrated economic viability. The PEA is preliminary in nature and includes inferred mineral resources that are considered too speculative geologically to have the economic considerations applied to them that would enable them to be categorized as mineral reserves. There is no certainty that the Project envisioned by this PEA will be realized. The mineral resource estimates, upon which the PEA is based, rely upon assumptions outlined in the “Resource Estimate” section of the technical report relating to the PEA. Some figures in the resource estimate may have been calculated using a factor to convert short tons to metric tonnes.
PAUL ZINK
Chief Financial Officer

Paul has more than 35 years experience in project finance, financial analysis, strategic planning, royalties, mergers and acquisitions, and business development. Beginning his career in investment banking with J.P. Morgan & Company, he has held senior management positions at International Royalty Corporation, Rare Element Resources Ltd., Eurasian Minerals Inc., Pegasus Gold Inc., and Koch Industries Inc.

Paul holds a B.A. in Economics and International Relations from Lehigh University.

WALTER WEINIG
MSc, CPG, PMP

VP Projects & Permitting

Walter has nearly 30 years of experience in mining hydrogeology, permitting, and project management at sites around the globe. He has managed multi-disciplinary engineering and scientific teams to accomplish complex design and permitting projects in surface and underground mining and environmental arenas.

Walter has a BSc in geology from the University of Wisconsin and an MSc in hydrology and water resources from the University of Arizona.

PATRICK HIGHSMITH
MSc, CPG; CEO, Director

Senior mining professional with over 25 years multi-commodity experience, including exploration, operations, and business development with BHP Billiton, Rio Tinto, and Newmont. Founding CEO of Lithium One Inc. and co-engineer of friendly 2012 merger with Galaxy Resources.
DEMAND IS REAL. CONSENSUS IS GATHERING – AROUND 580K TPA BY 2025

Global Lithium Demand Forecast

Benchmark Mineral Intelligence, Lithium Hydroxide Market Forecast, April, 2017
MUCH MORE THAN JUST TESLA! APPROXIMATELY 338 GWh ANNOUNCED (SO FAR)
MORGAN STANLEY FORECASTS HUGE RAPID GROWTH IN SUPPLY...

WHAT IF HISTORY REPEATS ITSELF?

WHAT ABOUT THE DOOMSDAY SCENARIO FROM MORGAN STANLEY? NOT LIKELY!

Morgan Stanley Forecast Lithium Supply (2017-2021)

<table>
<thead>
<tr>
<th>Year</th>
<th>(Forecast)</th>
<th>(Actual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>224k TONNES</td>
<td>300 - 350k TONNES</td>
</tr>
<tr>
<td>2021</td>
<td>565k TONNES</td>
<td>300 - 350k TONNES</td>
</tr>
</tbody>
</table>

ACTUAL SUPPLY IN 2021 AND BEYOND MAY FALL WELL SHORT OF FORECASTS

Historical Lithium Supply Forecast vs. Actual (2012-2016)*

<table>
<thead>
<tr>
<th>Year</th>
<th>(Forecast)</th>
<th>(Actual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>155k TONNES</td>
<td>205k TONNES</td>
</tr>
<tr>
<td>2016</td>
<td>415k TONNES</td>
<td>205k TONNES</td>
</tr>
</tbody>
</table>

* - Orocobre corporate presentation, May 2017
ADVANCING 2 LITHIUM PROJECTS

UNITED STATES
CLAYTON VALLEY PROJECT

ARGENTINA
TERRA COTTA PROJECT
World-Class Infrastructure

Power Lines, Roads, and North America’s Only Lithium Producer...
CONSOLIDATION: THE CLAYTON VALLEY PROJECT CONTINUES TO GROW

EXPANDED PURE ENERGY CLAIMS:

Existing Claims: 24,600 ACRES

Acquired Nov ‘17: 1,450 ACRES

TOTAL: 26,050 ACRES
(10,550 HECTARES)

CLAYTON NE CLAIM BLOCK
6 EXPLORATION HOLES
AVG LITHIUM GRADE: 204 mg/L

INFERRED RESOURCE AREA
AREAS OF EXPLORATION
FOCUS IN 2018

- Existing Claims
- Albemarle Silver Peak Mine
- Newly Acquired Claims - Nov ’17
- Wells
RESOURCES & KEY TECHNICAL PARAMETERS

Lithium Resource LCE
(metric tonnes)

218,000

Average Lithium Grade
(mg/L)

123

TOTAL INFERRED RESOURCES

WORLD-CLASS CHEMISTRY

Magnesium

to Lithium Ratio: **2.9**

Avg Calcium Content
(mg/L)*:

1,536

Sulfate

to Lithium Ratio: **18.2**

* Chemistry derived from global average calculations from database, June 2017

NOTE: Mineral resources that are not mineral reserves do not have any demonstrated economic viability. Inferred resources are the least reliable resource category and are subject to the most variability. Please see the Company’s full technical report at www.sedar.com or www.pureenergyminerals.com for details on how the resource was derived and for the reporting details in terms of lithium metal (Li) and lithium hydroxide monohydrate (LiOH•H₂O).
SUMMARY OF PRELIMINARY ECONOMIC ASSESSMENT* (PEA) – ATTRACTIVE ECONOMICS

<table>
<thead>
<tr>
<th>Key Project Economic Indicators (Currency in US $)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Annual Production (Lithium Hydroxide)</td>
<td>10,300 tonnes</td>
</tr>
<tr>
<td>After Tax - Net Present Value (8% Discount)</td>
<td>$264 million</td>
</tr>
<tr>
<td>After Tax - Internal Rate of Return (IRR)</td>
<td>21%</td>
</tr>
<tr>
<td>Mine Life</td>
<td>20 years</td>
</tr>
<tr>
<td>Annual Project EBITDA* (name plate production)</td>
<td>$100 million</td>
</tr>
<tr>
<td>Total Initial Capital Costs (30% Contingency)</td>
<td>$297 million</td>
</tr>
<tr>
<td>Direct Operating Costs LiOH·H₂O (Steady State)</td>
<td>$3,217/tonne</td>
</tr>
</tbody>
</table>

* - The economic analysis is based upon inferred mineral resources only. Mineral resources that are not mineral reserves do not have demonstrated economic viability. This PEA is preliminary in nature and includes inferred mineral resources that are considered too speculative geologically to have the economic considerations applied to them that would enable them to be categorized as mineral reserves. There is no certainty that the Project envisioned by this PEA will be realized.

** - EBITDA is a non-IFRS earnings measure which does not have any standardized meaning prescribed by IFRS and therefore may not be comparable to EBITDA presented by other companies. EBITDA represents earnings before interest expense, income taxes, depreciation and amortization. Investors are cautioned that this non-IFRS financial measure should not be construed as an alternative to other measures of financial performance calculated in accordance with IFRS.
A Dynamic Pricing Model Based on Real Market Analysis

KEY ASSUMPTIONS:

100% Equity Financing

Production Ramp-up over ~15 months:
- 4,100 tonnes LiOH•H₂O in 2021
- 10,800 tonnes LiOH•H₂O in 2022
- 11,400 tonnes LiOH•H₂O in 2023

Effective Tax Rate of 20%
CLAYTON VALLEY: A POTENTIAL LOW COST PRODUCER

Lithium Hydroxide Cost Curve 2021 (US$/t)

<table>
<thead>
<tr>
<th>Company</th>
<th>Cost (US$/t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albemarle (USA)</td>
<td>3,475</td>
</tr>
<tr>
<td>SQM (Chile & Russia)</td>
<td>3,950</td>
</tr>
<tr>
<td>Tianqi (Australia)</td>
<td>4,900</td>
</tr>
<tr>
<td>Tianqi (China)</td>
<td>6,120</td>
</tr>
<tr>
<td>Albemarle (China)</td>
<td>6,700</td>
</tr>
<tr>
<td>FMC (USA)</td>
<td>6,990</td>
</tr>
<tr>
<td>Ganfeng (China)</td>
<td>7,820</td>
</tr>
<tr>
<td>Other (China)</td>
<td>8,400</td>
</tr>
<tr>
<td>FMC (China)</td>
<td>11,000</td>
</tr>
<tr>
<td>Nemaska (Canada)</td>
<td>2,811</td>
</tr>
<tr>
<td>Clayton Valley</td>
<td>3,217 (EST)</td>
</tr>
</tbody>
</table>

Source: Roskill 2018, Nemaska Lithium 2018
THERE IS A BETTER WAY: BETTER, FASTER, AND GREENER LITHIUM RECOVERY!

Clayton Valley Project Lithium Processing Flowsheet
CLAYTON VALLEY PILOT PLANT DESIGN - PROOF IS ON THE WAY!

- Tenova Pulsed Column Extraction
- LiEL™
- LiP™ Polishing & pH Control
- LisX™
- Scrubbing
- Stripping
Realistic and Aggressive - It’s all about the Pilot Plant

Clayton Valley South Execution Schedule

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Baseline Studies</td>
<td>18 months</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
<tr>
<td>Permitting for Pilot Plant</td>
<td>12 months</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
<tr>
<td>Design of Pilot Plant</td>
<td>12 months</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
<tr>
<td>Procurement of Pilot Plant</td>
<td>9 months</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
<tr>
<td>Construction of Pilot Plant</td>
<td>6 months</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
<tr>
<td>Operation of Pilot Plant</td>
<td>6 months</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
<tr>
<td>Environmental Impact Assessment or Study</td>
<td>12 months</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
<tr>
<td>Permitting for Project Execution</td>
<td>12 months</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
<tr>
<td>Feasibility Study - Basin Activities</td>
<td>15 months</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
<tr>
<td>Feasibility Study - Plant Activities & Feasibility Report</td>
<td>9 months</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
<tr>
<td>Project Financing</td>
<td>3 months</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
<tr>
<td>Design & Engineering- Project Execution</td>
<td>9 months</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
<tr>
<td>Procurement & Delivery - Project Execution</td>
<td>12 months</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
<tr>
<td>Construction</td>
<td>15 months</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
<tr>
<td>Commissioning</td>
<td>6 months</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
<tr>
<td>Ramp-Up</td>
<td>9 months</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
</tbody>
</table>
NEXT STEPS

Surface Sampling & Geophysics Complete
 Lithium anomalies
 Zonation of brine chemistry
 Large Conductive Zones Suggest Brine
 Geological mapping

Environmental Impact Report Complete

Drilling Commenced in Feb 2018

Planning for up to 5 to 10 drill holes:
 Mixture of core and rotary
TERRA COTTA PROJECT – CORE DRILLING UNDERWAY

Terra Cotta Phase 1 Drill Locations

Terra Cotta: Surface Trenches with Brine
SUMMARY - STRONG, TENACIOUS MANAGEMENT CAN DELIVER A PARADIGM SHIFT

Strong Management with Relevant Experience

Two Large Brine Projects at Different Stages

Better, Faster, & Greener Lithium Recovery

Major Milestones in 2018, Feasibility in 2019

Opportunities for Paradigm Shift & Re-Valuation with Feasibility & Strategic Investor
Patrick Highsmith, President & Chief Executive Officer
p.highsmith@pureenergyminerals.com
303.317.6857